Consciousness is likely an evolved adaptation since it meets George Williams’ criteria of species universality, complexity, and functionality, and it is a trait that apparently increases fitness.
In his paper “Evolution of consciousness,” John Eccles argues that special anatomical and physical adaptations of the mammalian cerebral cortex gave rise to consciousness. In contrast, others have argued that the recursive circuitry underwriting consciousness is much more primitive, having evolved initially in pre-mammalian species because it improves the capacity for interaction with both social and natural environments by providing an energy-saving “neutral” gear in an otherwise energy-expensive motor output machine. Once in place, this recursive circuitry may well have provided a basis for the subsequent development of many of the functions that consciousness facilitates in higher organisms, as outlined by Bernard J. Baars. Richard Dawkins suggested that we evolved consciousness in order to make ourselves the subjects of thought. Daniel Povinelli suggests that large, tree-climbing apes evolved consciousness to take into account one’s own mass when moving safely among tree branches. Consistent with this hypothesis, Gordon Gallup found that chimps and orangutans, but not little monkeys or terrestrial gorillas, demonstrated self-awareness in mirror tests.
The concept of consciousness can refer to voluntary action, awareness, or wakefulness. However, even voluntary behavior involves unconscious mechanisms. Many cognitive processes take place in the cognitive unconscious, unavailable to conscious awareness. Some behaviors are conscious when learned but then become unconscious, seemingly automatic. Learning, especially implicitly learning a skill, can take place outside of consciousness. For example, plenty of people know how to turn right when they ride a bike, but very few can accurately explain how they actually do so. Evolutionary psychology approaches self-deception as an adaptation that can improve one’s results in social exchanges. Sleep may have evolved to conserve energy when activity would be less fruitful or more dangerous, such as at night, especially in winter.